

Course Syllabus

1	Course title	INDUSTRIAL CHEMISTRY 2					
2	Course number	0303451					
3	Credit hours	3					
	Contact hours (theory, practical)	3+0					
4	Prerequisites/corequisites	Industrial Chemistry I (0303351)					
5	Program title	Chemistry					
6	Program code	03					
7	Awarding institution	The University of Jordan					
8	School	Science					
9	Department	Chemistry					
10	Course level	4 th year					
11	Year of study and semester (s)	2 nd semester 2024-2025					
12	Other department (s) involved in teaching the course	none					
13	Main teaching language	English					
14	Delivery method	ce to face learning Blended Fully online					
15	Online platforms(s)	☐ Moodle					
13	Offine placiotins(s)	□Others					
16	Issuing/Revision Date						
17 Co	ourse Coordinator:						
Nam	e: Prof. Dr. Imad Hamadneh	Contact hours: Sun, Tus, Thu 9:30-10;30					
Offic	ce number: 28	Phone number: 22164					
Ema	il: i.hamadneh@ju.edu.jo						

18 Other instructors:

Name:	
Office number:	
Phone number:	
Email:	
Contact hours:	
Name:	
Office number:	
Phone number:	
Email:	
Contact hours:	
Contact hours:	

19 Course Description:

This course covers the basic consideration, characteristics of the chemical industry, such as production processes for Cement, Glass, Chlor-Alkali chemical industries, Nitrogen industries, industrial Metallurgy and process of extraction for iron, copper and aluminum.

20 Course aims and outcomes: مركز الاعتما

A- Aims: Course Learning Outcomes (0303351) Industrial Chemistry -1

Upon successful completion of this course, students will be able to:

- CLO-1. Problem-Solving: Graduates will be able to apply mathematical and scientific knowledge to calculate the reactor's volume, the reaction's ordering, the separation techniques, and the reaction time. (ASO-1)
- CLO-2. Identify, formulate, and solve technical or scientific problems relevant to Industrial Chemistry-2. (ASO-1 &ASO-2)
- CLO-3. Communication: Graduates will be able to communicate scientific information effectively and accurately to a range of audiences, including both technical and non-technical audiences. (ASO-1 &ASO-5)

B- Students Learning Outcomes (SLOs):

- SO-1. Problem Solving: Graduates will be able to apply mathematical and scientific knowledge to identify, formulate, and solve technical or scientific problems relevant to the discipline of chemistry.
- SO-2. Design: Graduates will be able to use their understanding of chemistry concepts and principles to formulate and design systems, processes, procedures, or programs to meet desired goals and outcomes.
- SO-3. Experimental Skills: Graduates will be able to design, conduct, and analyze experiments or test hypotheses, utilizing appropriate chemical techniques and scientific judgment to draw meaningful conclusions.
- SO-4. Communication: Graduates will be able to communicate scientific information effectively and accurately to a range of audiences, including both technical and non-technical audiences.
- SO-5. Ethics and Global Context: Graduates will understand and apply ethical and professional responsibilities in the context of the impact of technical and scientific solutions on global, economic, environmental, and societal issues.
- SO-6. Teamwork: Graduates will be able to work effectively as part of a team, establishing goals, planning tasks, meeting deadlines, and analyzing risk and uncertainty in the context of chemistry-related projects and initiatives.
- SO-7. Handling Chemicals: An ability to apply the proper procedures for safe handling of chemicals.

	SLO (1)	SLO (2)	SLO (3)	SLO (4)	SLO (5)
SLOs					
GY O CA					
SLOs of the					
course					
CLO-1	✓				
CLO-2	✓	√			
CLO-3	✓				✓

21. Topic Outline and Schedule:

Week	Lect ure	Торіс	Student Learning Outcome	Learning Methods (Face to Face/Blended / Fully Online)	Platform	Synch ronou s / Async hrono us Lectu ring	Evaluation Methods	Resources
	1.1	Introduction to cement Industry	CLO1 CLO 2	Face to Face	Classroom		1 st exam	Introduction of Industrial Chemistr Blackie, Glasgow, 1991
1	1.2	Raw materials of cement industry	CLO1 CLO 2	Face to Face	Classroom		1 st exam	Introduction of Industrial Chemistr Blackie, Glasgow, 1991
	1.3	Classification of cement	CLO1 CLO 2 CLO3	Face to Face	Classroom		1 st exam	Introduction of Industrial Chemistr Blackie, Glasgow, 1991

ACCREDITATION & QUALITY ASSURAN	CE CENTER	T	·		C	1 of	
	2.1	processes of Cement	CLO1 CLO 2	Face to Face	Classroom	1 st exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
2	2.2	Manufacturing processes of Cement and Lime	CLO1 CLO 2	Face to Face	Classroom	1st exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
	2.3	Setting and Hardening process	CLO1 CLO 2	Face to Face	Classroom	1st exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
	3.1	Introduction to Glass Industry	CLO1 CLO 2 CLO3	Face to Face	Classroom	1st exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
3	3.2	Physical and chemical properties	CLO1 CLO 2	Face to Face	Classroom	1 st exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
	3.3	Characteristic of glass	CLO1 CLO 2	Face to Face	Classroom	1st exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
	4.1	Raw material Manufacturing process of glass	CLO1 CLO 2 CLO3	Face to Face	Classroom	1 st exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
4	4.2	Ceramic- Raw material.	CLO1 CLO 2 CLO3	Face to Face	Classroom	1 st exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
	4.3	Manufacturing process of White ware, Glazing.	CLO1 CLO 2	Face to Face	Classroom	1st exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
5	5.1	Introduction to Chlor-alkali products	CLO1 CLO 2	Face to Face	Classroom	1st exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
	5.2	Uses of chlorine	CLO1 CLO 2	Face to Face	Classroom	1 st exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991

ACCHESTATION & GUALTY ASSUMM	5.3	Uses of caustic soda (sodium hydroxide)	CLO1 CLO 2	Face to Face	Classroom	2 nd Exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
	6.1	Uses of hydrogen	CLO1 CLO 2	Face to Face	Classroom	2 nd Exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
6	6.2	Types of cell Mercury cell process	CLO1 CLO 2	Face to Face	Classroom	2 nd Exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
	6.3	Diaphragm cell process Membrane cell process.	CLO1 CLO 2	Face to Face	Classroom	2 nd Exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
	7.1	Introduction to Phosphorus industries:	CLO1 CLO 2	Face to Face	Classroom	2 nd Exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
7	7.2	Calcium phosphate,	CLO1 CLO 2	Face to Face	Classroom	2 nd Exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
	7.3	manufacture of phosphoric acid,	CLO1 CLO 2	Face to Face	Classroom	2 nd Exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
	8.1	single and triple super phosphate,	CLO1 CLO 2	Face to Face	Classroom	2 nd Exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
8	8.2	baking powder and DAP.	CLO2 CLO3	Face to Face	Classroom	2 nd Exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
	8.3	applications	CLO 2	Face to Face	Classroom	2 nd Exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
9	9.1	Introduction to Sulphur Industry	CLO 2	Face to Face	Classroom	2 nd Exam	Introduction of Industrial Chemistry,

ACCREDITATION & QUALITY ASSURAN	NOE CENTER			1	T T	Ī	Dlaskia Classess
							Blackie, Glasgow, 1991
	9.2	Mining and manufacture of sulfur	CLO1 CLO 2	Face to Face	Classroom	2 nd Exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
	9.3	Products of sulfur	CLO1 CLO 2	Face to Face	Classroom	2 nd Exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
	10.1	Sulfuric acid:	CLO1 CLO 2	Face to Face	Classroom	2 nd Exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
10	10.2	Manufacturing routes	CLO1 CLO 2	Face to Face	Classroom	2 nd Exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
	10.3	Environmental impact	CLO1 CLO 2	Face to Face	Classroom	2 nd Exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
11	11.1	Nitrogen Industries:	CLO1 CLO 2	Face to Face	Classroom	2 nd Exam	C. A. Heaton, An Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
	11.2	Manufacturing of Urea	CLO1 CLO 2	Face to Face	Classroom	2 nd Exam	C. A. Heaton, An Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
11 12	11.3	Manufacturing of Calcium cyanamide	CLO1 CLO 2	Face to Face	Classroom	Final Exam	C. A. Heaton, An Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
	12.1	Manufacturing of Ammonia	CLO 2	Face to Face	Classroom	Final Exam	C. A. Heaton, An Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
12 13	12.2	Type of synthesis	CLO1 CLO 2 CLO3	Face to Face	Classroom	Final Exam	C. A. Heaton, An Introduction of Industrial Chemistry,

ACCREDITATION & QUALITY ASSURAN	CE CENTER	I	Г				D 01
							Blackie, Glasgow, 1991
	12.3	properties	CLO1 CLO 2	Face to Face	Classroom	Final Exam	C. A. Heaton, An Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
	13.1	Nitric acid	CLO1 CLO 2	Face to Face	Classroom	Final Exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
	13.2	Introduction to metallurgy Industry	CLO1 CLO 2	Face to Face	Classroom	Final Exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
13 14	13.3	Extraction processes	CLO1 CLO 2	Face to Face	Classroom	Final Exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
	14.1	Iron and Steel Industries	CLO 2 CLO3	Face to Face	Classroom	Final Exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
	14.2	Types and properties of stainless steel	CLO 2 CLO3	Face to Face	Classroom	Final Exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
14 15	14.3	Aluminum mining	CLO1 CLO 2 CLO3	Face to Face	Classroom	Final Exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
	15.1	Ammonium Alloys	CLO 2 CLO3	Face to Face	Classroom	Final Exam	Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
	15.2	Copper mining	CLO 2 CLO3	Face to Face	Classroom		Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
15	15.3	Copper refining	CLO 2 CLO3		Classroom		Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
					Classroom		

22 Evaluation Methods: مركز الاعتماد

Opportunities to demonstrate achievement of the SLOs are provided through the following assessment methods and requirements:

Evaluation Activity	Mark	Topic(s)	SLOs	Period (Week)	Platform
			CLO1		
		Cement Industry	CLO 2 CLO3		
1 ¢ t					
1 st exam		Glass Industry			
		Chlor-alkali products			In the
	30%			7 th week	department
		Phosphorus industries.	CLO1		
2 nd exam		Sulphur and Sulfuric acid.	CLO 2 CLO3		
2 Caam					In the
	20%	Nitrogen Industries.		10 th week	department
			CLO1 CLO 2		
			CLO 2 CLO3		
		Comment In Academ			
		Cement Industry			
		Glass Industry			
		Chlor-alkali products			
Final					
		Phosphorus industries.			
		Sulphur and Sulfuric acid.			
		Nitrogen Industries.			
		Metallurgy Industry.			In the
	50%	Iron, copper, and Aluminum		17 th week	department

23 Course Requirements

(e.g. students should have a computer, internet connection, webcam, account on a specific software/platform...etc):

24 Course Policies:

ACCRICIPATION & QUALITY ASSURANCE, CENTER
A- Attendance policies:
B- Absences from exams and submitting assignments on time:
C- Health and safety procedures:
D- Honesty policy regarding cheating, plagiarism, misbehavior:
E- Grading policy:
F- Available university services that support achievement in the course:

25 References:

- A- Required book(s), assigned reading and audio-visuals:
 - 1. C. A. Heaton, An Introduction of Industrial Chemistry, Blackie, Glasgow, 1991
 - 2. H. White, Introduction to Industrial Chemistry, Wiley-interscience, New York, 1986
- B- Recommended books, materials, and media:
 - 1. 1 P. Chenier Survey of Industrial Chemistry, Third Edition, Kluwer Academic / Plenum Publishers, New York, 2002,
 - 2. H. A. Wittcoff, B. G. Reuben, J. S. Plotkin, Industrial Organic Chemicals, Second Edition, John Wiley, Wiley-Interscience, 2004.
 - 3. K. Weissermel, H.-J. Arpe, Industrial Organic Chemistry, Second Edition, VCH, Weinheim, Germany, 1993
 - 4. Basic Organic Chemistry Part 5: Industrial Products, J. M. Tedder, A. Nechvatal, A. H. Jubb, John Wiley, Chichester, 1975

26 Additional information:						

Name of Course Coordinator:Imad Hamadneh Date: Date:
Head of Curriculum Committee/Department: Signature:
Head of Department: Signature:
-
Head of Curriculum Committee/Faculty: Signature:
Dean: Signature: